An Approach To Fabricate PDMS Encapsulated All-Solid-State Advanced Asymmetric Supercapacitor Device with Vertically Aligned Hierarchical Zn-Fe-Co Ternary Oxide Nanowire and Nitrogen Doped Graphene Nanosheet for High Power Device Applications.


We highlight the design and fabrication of a polydimethylsiloxane (PDMS) encapsulated advanced all-solid-state asymmetric supercapacitor (ASC) device consisting of hierarchical mesoporous zinc-iron-cobalt ternary oxide (ZICO) nanowire coated nickel (Ni) foam (ZICO@Ni foam) as a promising positive electrode and nitrogen doped graphene coated Ni foam (N-G@Ni foam) as negative electrode in the presence of PVA-KOH gel electrolyte. Owing to outstanding electrochemical behavior and ultrahigh specific capacitance of ZICO (≈ 2587.4 F/g at 1 A/g) and N-G (550 F/g at 1 A/g) along with their mutual synergistic outputs, the assembled all-solid-state ASC device exhibits an outstanding energy density of ≈40.5 Wh/kg accompanied by a remarkable long-term cycle stability with ≈95% specific capacitance retention even after 5000 charge-discharge cycles. The exclusive hierarchical ZICO nanowires were synthesized by a facile two-step process comprising of a hydrothermal protocol followed by an annealing treatment on a quartz substrate. While Zn<sup>2+</sup> gives the stability of the oxide system, Fe and Co ions provide better electronic conductivity and capacitive response under vigorous cyclic condition. The extraordinary performance of as-fabricated ASC device resembles its suitability for the construction of advanced energy storage devices in modern electronic industries.

  • Bera R
  • Das AK
  • Karan SK
  • Khatua BB
  • Maitra A
  • Paria S
  • Si SK
Pub Med ID
Appears In
ACS Appl Mater Interfaces, 2017, 9 (7)