Recent insights into the molecular mechanisms involved in aging and the malignant transformation of adult stem/progenitor cells and their therapeutic implications.

Abstact

Recent advancements in tissue-resident adult stem/progenitor cell research have revealed that enhanced telomere attrition, oxidative stress, ultraviolet radiation exposure and oncogenic events leading to severe DNA damages and genomic instability may occur in these immature and regenerative cells during chronological aging. Particularly, the alterations in key signaling components controlling their self-renewal capacity and an up-regulation of tumor suppressor gene products such as p16(INK4A), p19(ARF), ataxia-telangiectasia mutated (ATM) kinase, p53 and/or the forkhead box O (FOXOs) family of transcription factors may result in their dysfunctions, growth arrest and senescence or apoptotic death during the aging process. These molecular events may culminate in a progressive decline in the regenerative functions and the number of tissue-resident adult stem/progenitor cells, and age-related disease development. Conversely, the telomerase re-activation and accumulation of numerous genetic and/or epigenetic alterations in adult stem/progenitor cells with advancing age may result in their immortalization and malignant transformation into highly leukemic or tumorigenic cancer-initiating cells and cancer initiation. Therefore, the cell-replacement and gene therapies and molecular targeting of aged and dysfunctional adult stem/progenitor cells including their malignant counterpart, cancer-initiating cells, hold great promise for treating and even curing diverse devastating human diseases. These diseases include premature aging diseases, hematopoietic, cardiovascular, musculoskeletal, pulmonary, ocular, urogenital, neurodegenerative and skin disorders and aggressive and recurrent cancers.

Authors
  • Batra SK
  • Mimeault M
PubMed ID
Appears In
Ageing Res Rev, 2009, 8 (2)