Differential gene expression of primary cultured lymphatic and blood vascular endothelial cells.


Blood vascular endothelial cells (BECs) and the developmentally related lymphatic endothelial cells (LECs) create complementary, yet distinct vascular networks. Each endothelial cell type interacts with flowing fluid and circulating cells, yet each vascular system has evolved specialized gene expression programs and thus both cell types display different phenotypes. BECs and LECs express distinct genes that are unique to their specific vascular microenvironment. Tumors also take advantage of the molecules that are expressed in these vascular systems to enhance their metastatic potential. We completed transcriptome analyses on primary cultured LECs and BECs, where each comparative set was isolated from the same individual. Differences were resolved in the expression of several major categories, such as cell adhesion molecules (CAMs), cytokines, and cytokine receptors. We have identified new molecules that are associated with BECs (e.g., claudin-9, CXCL11, neurexin-1, neurexin-2, and the neuronal growth factor regulator-1) and LECs (e.g., claudin-7, CD58, hyaluronan and proteoglycan link protein 1 (HAPLN1), and the poliovirus receptor-related 3 molecule) that may lead to novel therapeutic treatments for diseases of lymphatic or blood vessels, including metastasis of cancer to lymph nodes or distant organs.


One biomarker makes reference to this publication:

  • Garkavtsev I
  • Jain RK
  • Nelson GM
  • Padera TP
  • Shioda T
PubMed ID
Appears In
Neoplasia, 2007, 9 (12)