Early Detection Research Network

Long Interspersed Nuclear Element 1 Retrotransposons Become Deregulated during the Development of Ovarian Cancer Precursor Lesions.

There is growing evidence that most high-grade serous ovarian carcinomas likely arise from local dissemination of precursor lesions of the fallopian tube. Evolution of these lesions from early p53 signatures to latter-stage, serous tubal intraepithelial carcinomas (STICs) is characterized by cytologic atypia, accumulation of somatic mutations, and genomic instability, the etiologies of which remain unclear. Long interspersed element 1 (LINE-1) retrotransposon is expressed in many carcinomas, including high-grade serous ovarian carcinoma, where it contributes to genomic instability; however, the timing of LINE-1 activation during this evolution has yet to be elucidated. In this study, we assessed LINE-1 open reading frame 1 protein expression in 12 p53 signature lesions, 32 STICs, and 112 various types of ovarian cancers via immunohistochemical staining and examined LINE-1 promoter methylation in representative cases. We found that 78% and 57% of STICs, with and without concurrent ovarian carcinomas, respectively, exhibited intense LINE-1 immunoreactivity compared with adjacent, normal-appearing fallopian tube epithelium. Hypomethylation of the LINE-1 promoter was found in all STICs exhibiting overexpression. None of the 12 p53 signatures demonstrated significant LINE-1 expression. In ovarian cancer, 84 (75%) of 112 ovarian carcinomas overexpressed LINE-1. Our results indicate that LINE-1 retrotransposons often become deregulated during progression of ovarian cancer precursor lesions from the p53 signature to STIC stages and remain highly expressed in carcinoma.

Asaka S, Bahadirli-Talbott A, Burns KH, Lin SF, Pisanic TR, Shih IM, Sun H, Wang TH, Wang TL, Yen TT

30553834

Am. J. Pathol., 2019, 189 (3)

Version 5.0.2