Early Detection Research Network

ADAR1 controls apoptosis of stressed cells by inhibiting Staufen1-mediated mRNA decay.

Both p150 and p110 isoforms of ADAR1 convert adenosine to inosine in double-stranded RNA (dsRNA). ADAR1p150 suppresses the dsRNA-sensing mechanism that activates MDA5-MAVS-IFN signaling in the cytoplasm. In contrast, the biological function of the ADAR1p110 isoform, which is usually located in the nucleus, is largely unknown. Here, we show that stress-activated phosphorylation of ADAR1p110 by MKK6-p38-MSK MAP kinases promotes its binding to Exportin-5 and its export from the nucleus. After translocating to the cytoplasm, ADAR1p110 suppresses apoptosis in stressed cells by protecting many antiapoptotic gene transcripts that contain 3'-untranslated-region dsRNA structures primarily comprising inverted Alu repeats. ADAR1p110 competitively inhibits binding of Staufen1 to the 3'-untranslated-region dsRNAs and antagonizes Staufen1-mediated mRNA decay. Our study reveals a new stress-response mechanism in which human ADAR1p110 and Staufen1 regulate surveillance of a set of mRNAs required for survival of stressed cells.

Kossenkov AV, Nishikura K, Ota H, Sakurai M, Shiromoto Y, Showe LC, Skordalakes E, Song C, Speicher DW, Tang HY, Wickramasinghe J

28436945

Nat. Struct. Mol. Biol., 2017, 24 (6)

Version 5.0.2