You are here: Home / Publications / BOOTSTRAP INFERENCE FOR NETWORK CONSTRUCTION WITH AN APPLICATION TO A BREAST CANCER MICROARRAY STUDY.

BOOTSTRAP INFERENCE FOR NETWORK CONSTRUCTION WITH AN APPLICATION TO A BREAST CANCER MICROARRAY STUDY.

24563684

Ann Appl Stat. 2013 Mar 7 (1).

Gaussian Graphical Models (GGMs) have been used to construct genetic regulatory networks where regularization techniques are widely used since the network inference usually falls into a high-dimension-low-sample-size scenario. Yet, finding the right amount of regularization can be challenging, especially in an unsupervised setting where traditional methods such as BIC or cross-validation often do not work well. In this paper, we propose a new method - Bootstrap Inference for Network COnstruction (BINCO) - to infer networks by directly controlling the false discovery rates (FDRs) of the selected edges. This method fits a mixture model for the distribution of edge selection frequencies to estimate the FDRs, where the selection frequencies are calculated via model aggregation. This method is applicable to a wide range of applications beyond network construction. When we applied our proposed method to building a gene regulatory network with microarray expression breast cancer data, we were able to identify high-confidence edges and well-connected hub genes that could potentially play important roles in understanding the underlying biological processes of breast cancer.

This icon signifies that something is happening and we kindly ask you to please wait