Early Detection Research Network

Prediction of prostate-specific antigen recurrence in men with long-term follow-up postprostatectomy using quantitative nuclear morphometry.

Nuclear morphometric signatures can be calculated using nuclear size, shape, DNA content, and chromatin texture descriptors [nuclear morphometric descriptor (NMD)]. We evaluated the use of a patient-specific quantitative nuclear grade (QNG) alone and in combination with routine pathologic features to predict biochemical [prostate-specific antigen (PSA)] recurrence-free survival in patients with prostate cancer.

The National Cancer Institute Cooperative Prostate Cancer Tissue Resource (NCI-CPCTR) tissue microarray was prepared from radical prostatectomy cases treated in 1991 to 1992. We assessed 112 cases (72 nonrecurrences and 40 PSA recurrences) with long-term follow-up. Images of Feulgen DNA-stained nuclei were captured and the NMDs were calculated using the AutoCyte system. Multivariate logistic regression was used to calculate QNG and pathology-based solutions for prediction of PSA recurrence. Kaplan-Meier survival curves and predictive probability graphs were generated.

A QNG signature using the variance of 14 NMDs yielded an area under the receiver operator characteristic curve (AUC-ROC) of 80% with a sensitivity, specificity, and accuracy of 75% at a predictive probability threshold of > or =0.39. A pathology model using the pathologic stage and Gleason score yielded an AUC-ROC of 67% with a sensitivity, specificity, and accuracy of 70%, 50%, and 57%, respectively, at a predictive probability threshold of > or =0.35. Combining QNG, pathologic stage, and Gleason score yielded a model with an AUC-ROC of 81% with a sensitivity, specificity, and accuracy of 75%, 78%, and 77%, respectively, at a predictive probability threshold of > or =0.34.

PSA recurrence is more accurately predicted using the QNG signature compared with routine pathology information alone. Inclusion of a morphometry signature, routine pathology, and new biomarkers should improve the prognostic value of information collected at surgery.

Isharwal S, Makarov DV, Marlow C, Miller MC, Partin AW, Veltri RW

18199716

Cancer Epidemiol. Biomarkers Prev., 2008, 17 (1)

Version 5.0.2