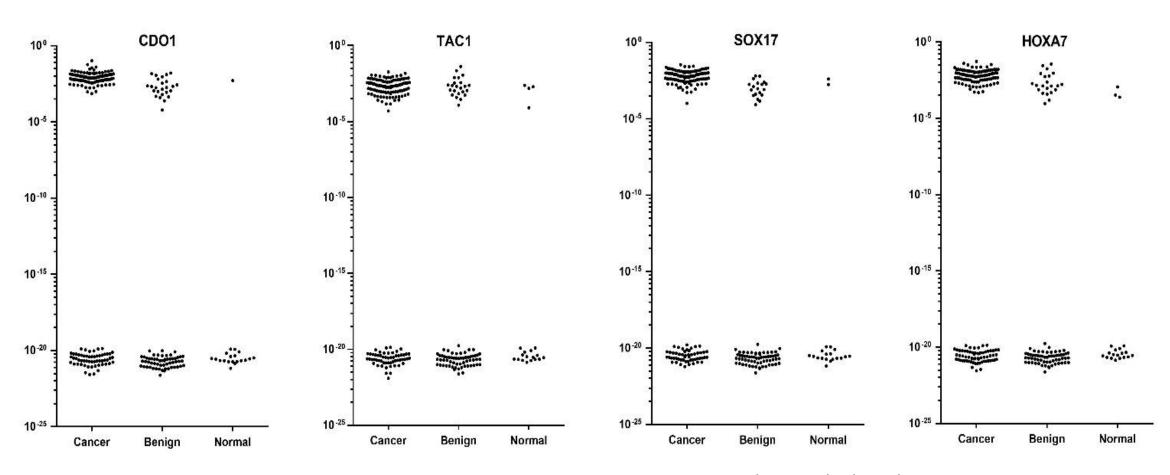
Optimizing DNA Methylation Detection for Early Lung Cancer

James G. Herman, M.D. Jeff Wang, Ph.D.

The UPMC Hillman Cancer Center
The University of Pittsburgh

The Johns Hopkins University


Methylation Detection in Plasma and Sputum

Stage I Lung Cancers and Surgical Controls

Blood	Sensitivity	Specificity	PPV	NPV	AUC	95% CI
CDO1	65%	74%	86%	46%	0.68	(0.58 - 0.77)
TAC1	76%	78%	90%	57%	0.78	(0.70 - 0.86)
HOXA7	33%	94%	93%	36%	0.60	(0.51 - 0.69)
HOXA9	81%	52%	81%	52%	0.62	(0.52 - 0.73)
SOX17	71%	86%	93%	54%	0.78	(0.70 - 0.86)
ZFP42	81%	58%	83%	55%	0.66	(0.56 - 0.75)
CD01, TAC1, SOX17	91%	64%	86%	74%	0.77	(0.68 - 0.86)
Sputum	Sensitivity	Specificity	PPV	NPV	AUC	95% CI
CDO1	78%	67%	90%	45%	0.70	(0.57 - 0.84)
TAC1	84%	79%	94%	57%	0.84	(0.74 - 0.94)
НОХА7	63%	92%	97%	40%	0.77	(0.67 - 0.86)
HOXA9	77%	42%	83%	32%	0.56	(0.41 - 0.69)
SOX17	84%	88%	96%	59%	0.84	(0.75 -0.94)
ZFP42	88%	62%	90%	58%	0.73	(0.60 - 0.87)
TAC1, HOXA7, SOX17	93%	79%	94%	75%	0.89	(0.80 - 0.98)

Validation of Plasma DNA Methylation Detection

246 patients with screen detected pulmonary nodules referred to surgeon Stage I: Nodules 3.0 cm or less, 163 cancer, 83 benign

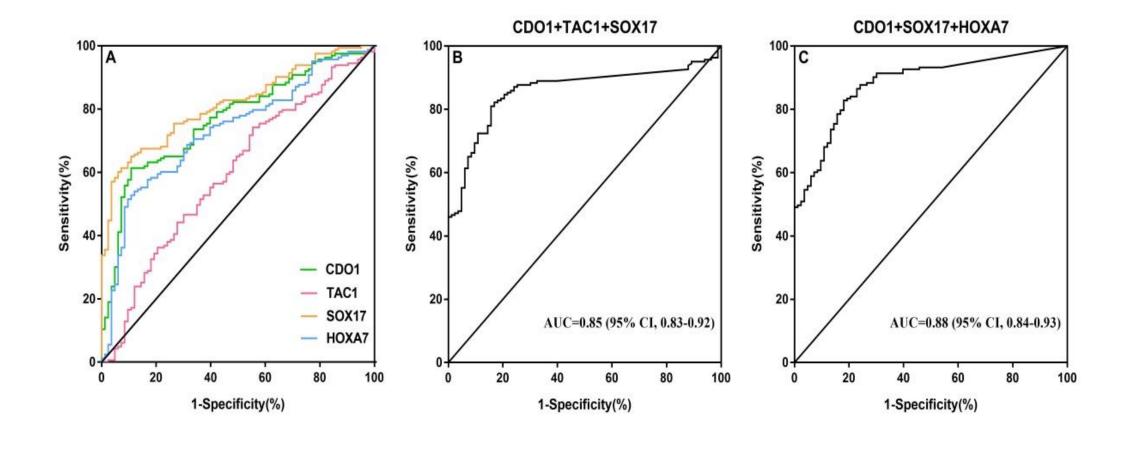
Chen et al, Clinical Epigenetics, 2020

Performance of Plasma DNA Methylation Detection in Validation Cohort Stage I NSCLCa T size ≤ 3.0 cm

Sensitivity, Specificity, PPV, and NPV at optimal cutoffs with AUC.

Gene	Sensitivity	Specificity	PPV	NPV	AUC	95% CI
CDO1	63%	83%	88%	53%	0.78	0.71-0.83
TAC1	68%	70%	81%	52%	0.71	0.64-0.78
SOX17	68%	86%	90%	57%	0.82	0.76-0.87
HOXA7	55%	87%	89%	50%	0.73	0.67-0.80
HOXA9	64%	49%	71%	41%	0.56	0.48-0.64
GATA4	44%	58%	67%	35%	0.53	0.45-0.61
GATA5	43%	63%	70%	36%	0.52	0.44-0.60
PAX5B	41%	55%	64%	32%	0.54	0.45-0.62
CDO1, TAC1, SOX17	89%	61%	82%	74%	0.85	0.81-0.91
CDO1, SOX17, HOXA7	90%	71%	86%	78%	0.88	0.84-0.93

Specificity compared to benign nodules


Performance of Plasma DNA Methylation Detection in Validation Cohort Stage I NSCLCa T size ≤ 3.0 cm

Sensitivity, Specificity, PPV, and NPV at optimal cutoffs with AUC.

Gene	Sensitivity	Specificity	PPV	NPV	AUC	95% CI
CDO1	63%	83%	88%	53%	0.78	0.71-0.83
TAC1	68%	70%	81%	52%	0.71	0.64-0.78
SOX17	68%	86%	90%	57%	0.82	0.76-0.87
HOXA7	55%	87%	89%	50%	0.73	0.67-0.80
HOXA9	64%	49%	71%	41%	0.56	0.48-0.64
GATA4	44%	58%	67%	35%	0.53	0.45-0.61
GATA5	43%	63%	70%	36%	0.52	0.44-0.60
PAX5B	41%	55%	64%	32%	0.54	0.45-0.62
CDO1, TAC1, SOX17	89%	61%	82%	74%	0.85	0.81-0.91
CDO1, SOX17, HOXA7	90%	71%	86%	78%	0.88	0.84-0.93

Specificity compared to benign nodules

ROC curves for Methylation Detection in Plasma

Performance of Plasma DNA Methylation Detection

Stage I NSCLCa according to T size (all ≤ 3.0 cm)

<u>Plasma</u>	<u>Sensitivity</u>	Specificity	<u>PPV</u>	<u>NPV</u>	<u>AUC</u>	<u>95% CI</u>
CDO1	63%	83%	88%	53%	0.78	(0.71 - 0.83)
TAC1	68%	70%	81%	57%	0.71	(0.64 - 0.78)
SOX17	68%	86%	90%	57%	0.82	(0.76 - 0.87)
HOXA7	55%	87%	89%	50%	0.73	(0.67 - 0.80)
CD01, TAC1, SOX17	89%	61%	82%	74%	0.85	(0.81 - 0.91)
CD01, HOXA7, SOX17	90%	71%	86%	78%	0.88	(0.84 - 0.93)
CD01, HOXA7, SOX17	<u>Sensitivity</u>	<u>Specificity</u>	PPV	<u>NPV</u>	<u>AUC</u>	95% CI
T 2.1-3.0 cm	91%	90%	96%	81%	0.95	(0.57 - 0.84)
T 1.1-2.0 cm	74%	93%	90%	63%	0.92	(0.74 - 0.94)
T 0 - 1.0 cm	64%	82%	82%	64%	0.75	(0.62 - 0.89)
CDO1, SOX17, TAC1						
T 0 - 1.0 cm	71%	82%	83%	69%	0.81	(0.69 - 0.93)

Comparison: stage 1 lung tumors (up to 5 cm included) CancerSEEK (Sensitivity of 43%)

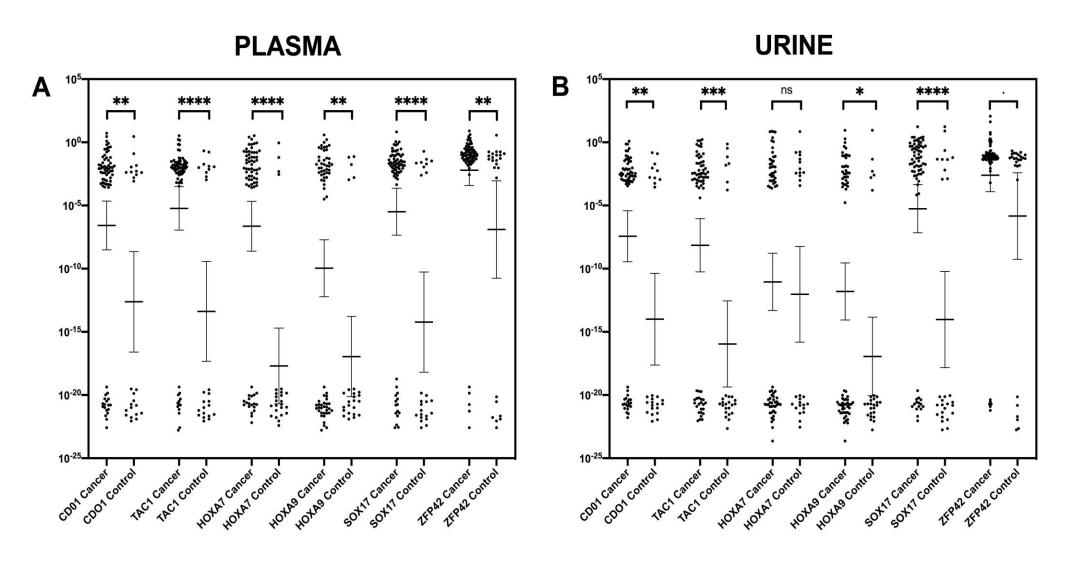
Can Urine be used for DNA Methylation Detection of Lung Cancer?

Rationale: ct DNA may be filtered by Kidney and be present in Urine

Oncogenic Driver mutations can be detected in Urine

Urine is easily collected, non-invasively

Approach: Utilize Established Lung Cancer Methylation Loci

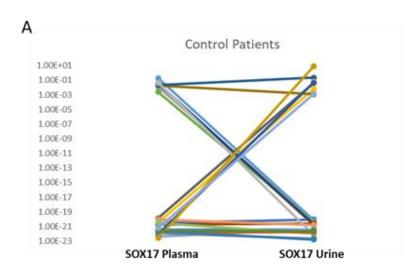

MOB-qMSP Detection

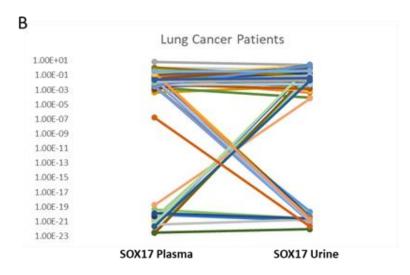
Modify Assay for DNA Fragment Size in Urine vs Plasma

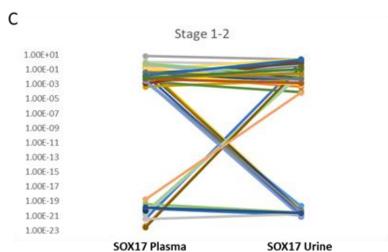
(~180bp Plasma, ~ or < 100 bp Urine)

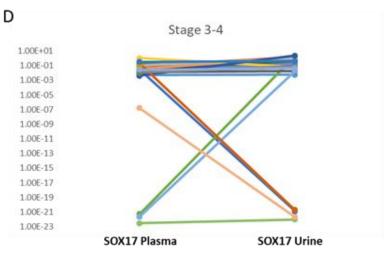
DNA Methylation Detection in Plasma and Urine

74 NSCLCa, 27 benign nodule controls

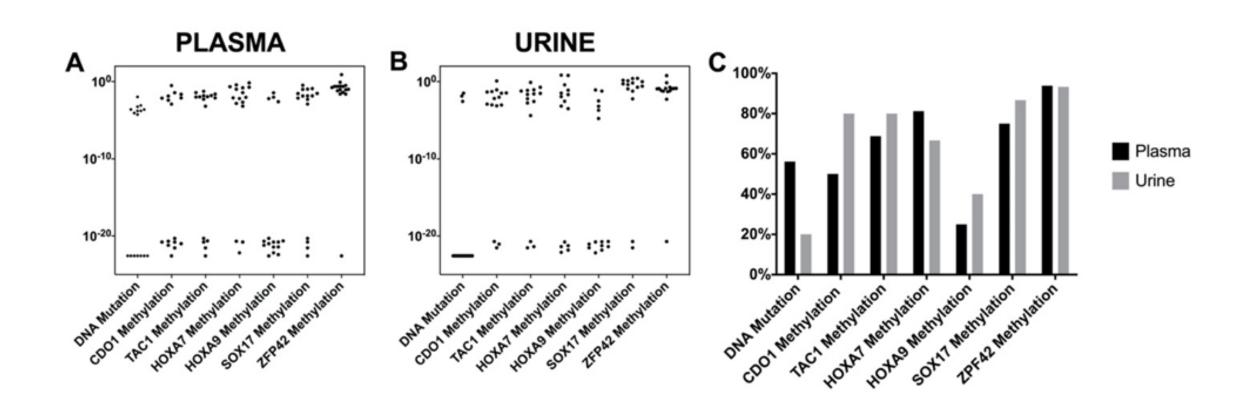

Liu B. ... Herman, JG, Hulbert A. Clinical Cancer Research, 2020


DNA Methylation Detection in Plasma and Urine

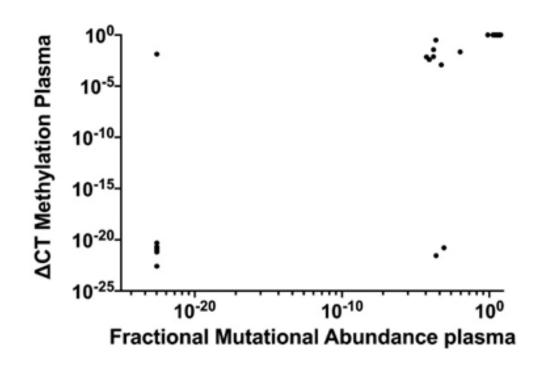

	Cancer (n=74)		Con	Control (n=25)				
Plasma	n	Sensitivity	n	Specificity	PPV	NPV	AUC	95% CI
CD01	56	76%	11	56%	84%	44%	0.68	0.55-0.80
TAC 1	61	82%	10	60%	86%	54%	0.73	0.61-0.86
HOXA7	55	74%	4	84%	93%	53%	0.79	0.69-0.90
HOXA9	43	58%	5	80%	90%	39%	0.66	0.54-0.77
SOX17	59	80%	9	64%	87%	52%	0.75	0.63-0.86
ZFP42	69	93%	18	28%	79%	58%	0.70	0.58-0.82
All (at least 3 positive)	65	88%	10	60%	87%	63%	0.68	0.56-0.80
	Ca	ncer (n=71)	Con	ntrol (n=27)				
Urine	n	Sensitivity	n	Specificity	PPV	NPV	AUC	95% CI
CD01	51	72%	10	63%	84%	46%	0.70	0.58-0.82
TAC 1	48	68%	7	74%	87%	47%	0.70	0.58-0.83
HOXA7	36	51%	12	56%	75%	30%	0.54	0.41-0.67
HOXA9	34	48%	5	81%	87%	37%	0.66	0.54-0.77
SOX17	56	79%	9	67%	86%	55%	0.76	0.65-0.88
ZFP42	65	92%	21	22%	76%	50%	0.65	0.52-0.77
All (at least 3 positive)	66	93%	19	30%	78%	62%	0.70	0.58-0.81
	Ca	ncer (n=71)	Con	ntrol (n=27)				
Plasma and Urine	n	Sensitivity	n	Specificity	PPV	NPV	AUC	95% CI
CD01	42	58%	4	85%	91%	42%	0.69	0.5-0.82
TAC 1	39	53%	2	92%	95%	41%	0.72	0.59-0.85
HOXA7	32	45%	4	85%	89%	37%	0.70	0.58-0.82
HOXA9	20	27%	1	96%	95%	33%	0.77	0.66-0.87
SOX17	47	65%	3	88%	94%	48%	0.78	0.67-0.89
ZFP42	60	85%	17	32%	78%	42%	0.72	0.60-0.84
All (at least 3 positive)	52	73%	2	92%	96%	55%	0.72	0.61-0.84

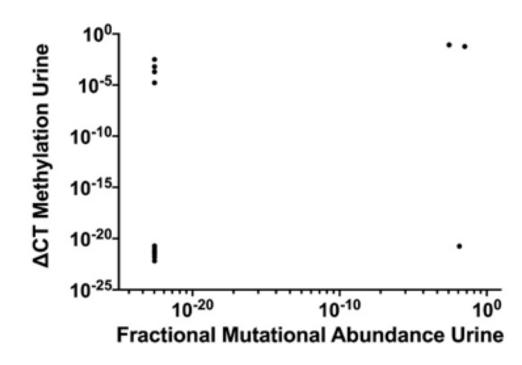

Abbreviations: Area under the curve: AUC; positive predictive value: PPV; negative predictive value: NPV.

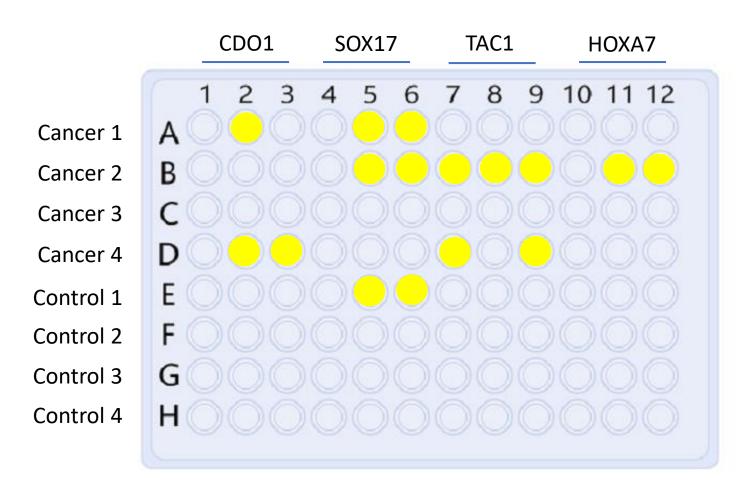
Concordance of DNA Methylation Detection Plasma vs Urine



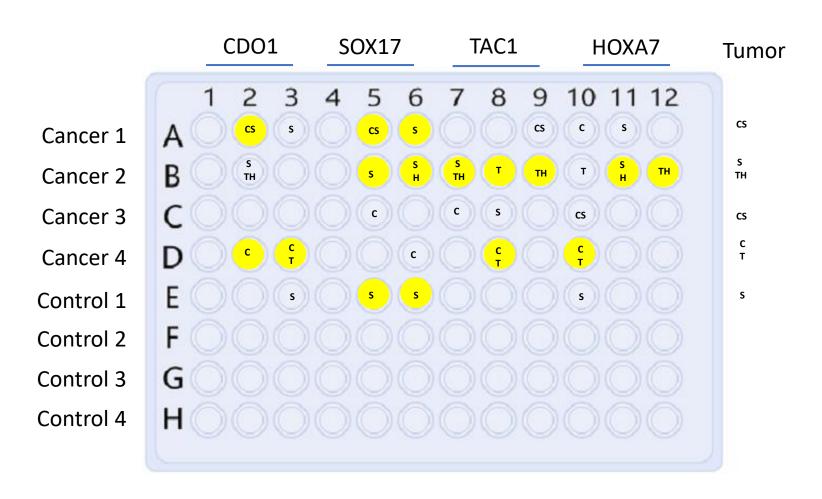
Comparison of DNA Methylation and Mutation Detection

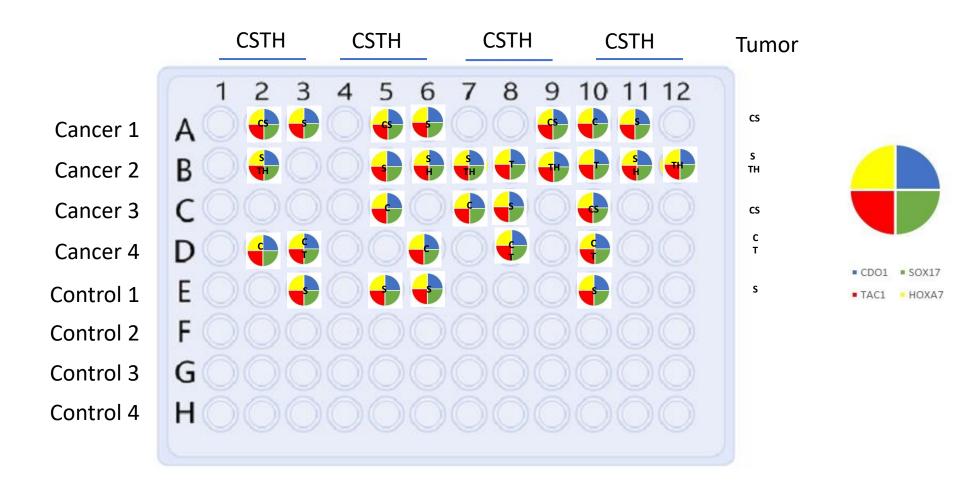

16 Patients with Oncogenic Driver Mutations (11 KRAS, 5 EGFR)

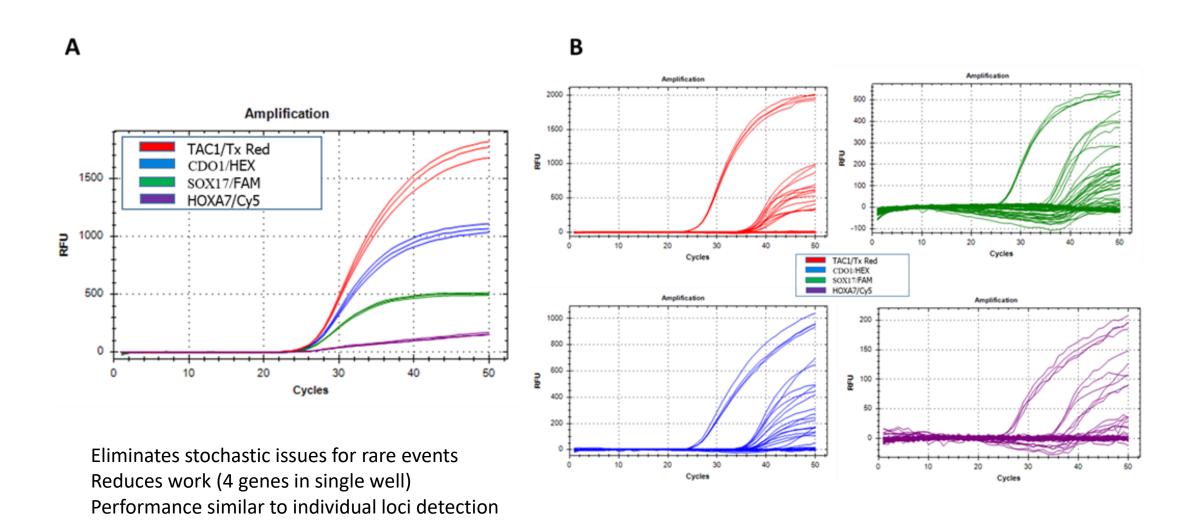

Droplet Digital PCR Mutation Detection

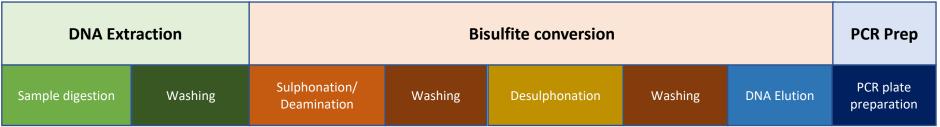

Concordance of DNA Methylation and Mutation Detection

16 Patients with Oncogenic Driver Mutations (11 KRAS, 5 EGFR)




Multi-gene MOB-qMSP detection: Addressing the challenge of stochastic sampling

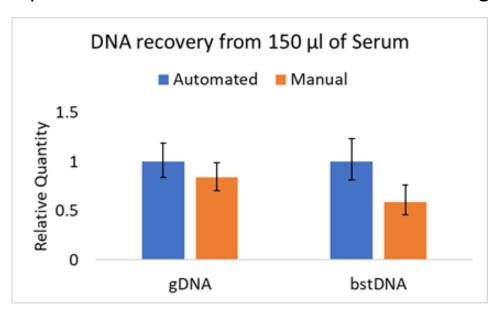

Multi-gene MOB-qMSP detection Stochastic sampling leads to missed detection

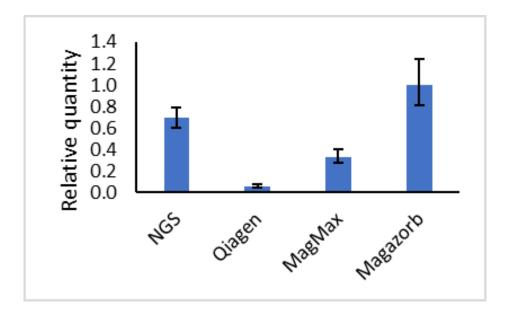

Multiplexing of Multi-gene MOB-qMSP detection Elimination of Stochastic sampling improves detection

Multiplexing for Multi-gene MOB-qMSP detection

Robotics Processing: EpMotion Sample Prep

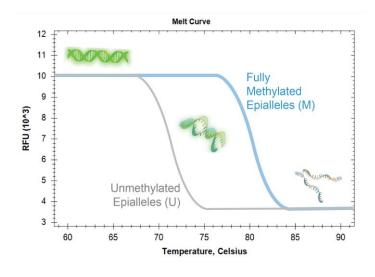
Objectives:

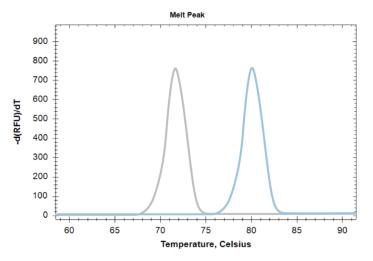

- Automated processing
- Enclosed environment
- High throughput

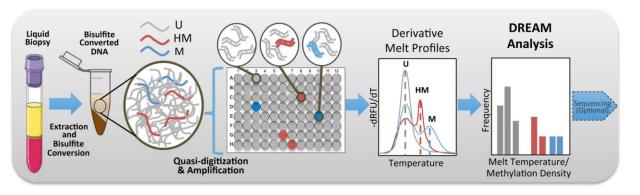

Robotics Processing: EpMotion Sample Prep

Improved Sample Quantity and Dependence on DNA extraction Reagents

Improvement in Automated vs Manual Processing

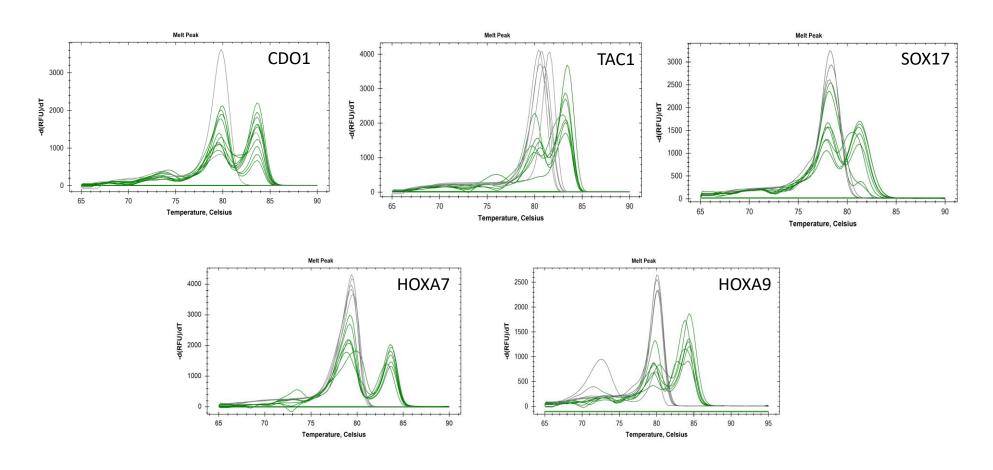

Efficiencies According to Extraction Reagents



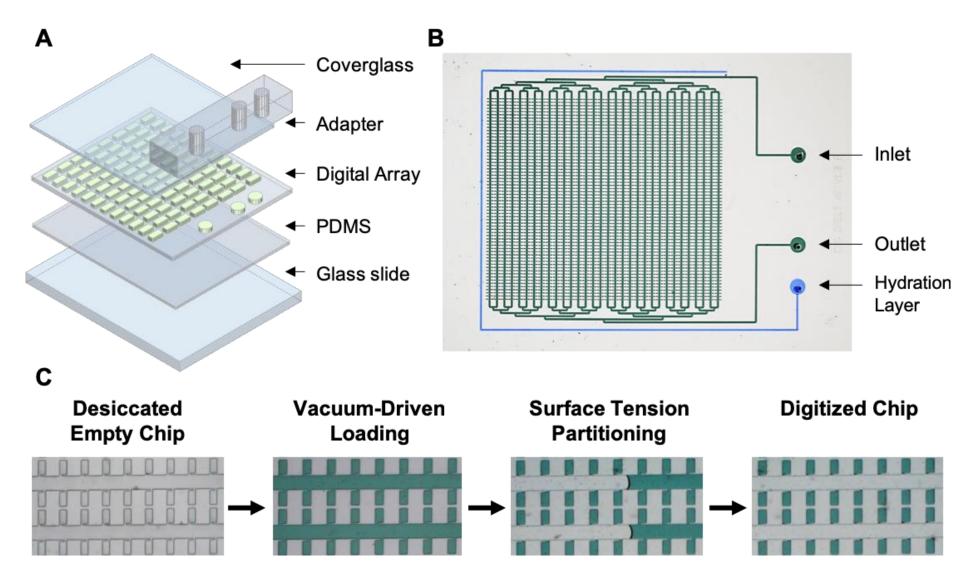

NeoGeneStar Circulating Cell Free DNA Kit (NGS) Qiagen DNEasy Blood and Tissue Kit (Qiagen) Thermo-Fisher MagMax kit Promega Magazorb kit.

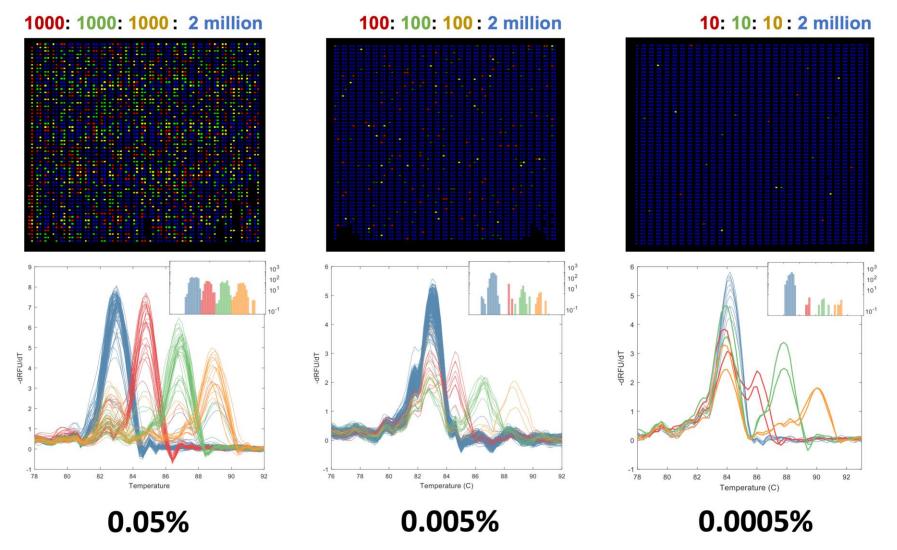
DREAMing

<u>Discrimination of Rare EpiAlleles by Melt</u>

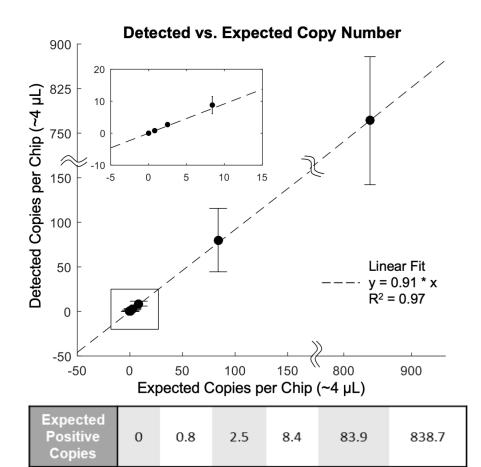


Pisanic II, et.al. Nucl. Acids Res. (2015)


DREAMing NSCLC Methylation Biomarkers


Increasing Detection of Rare events requires more wells

Microfluidic Digitization


Increasing Sensitivity using 4096-well array

Microfluidic DREAMing Analytical Validation

Microfluidic DREAMing Extreme Sensitivity and Analytical Validation

 $2.3 \pm$

0.6

 $7.7 \pm$

2.7

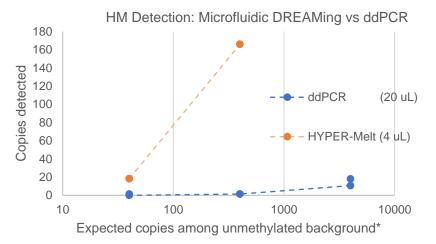
69.7 ±

35.6

669.3 ±

108.7

Detected

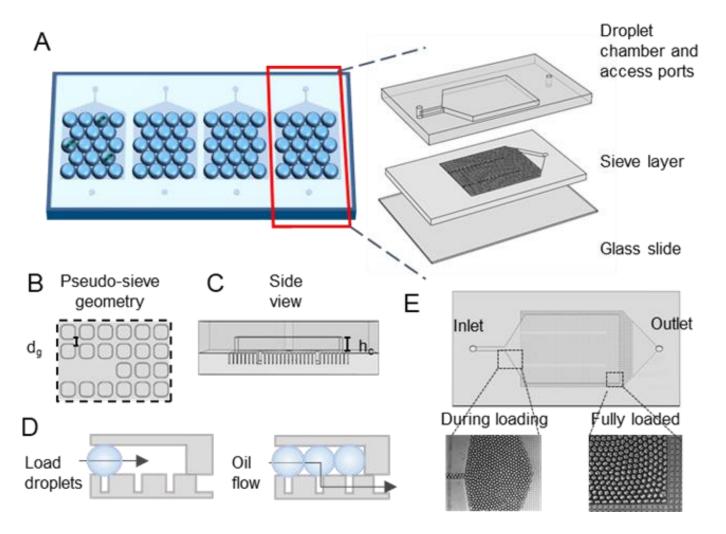

Positive

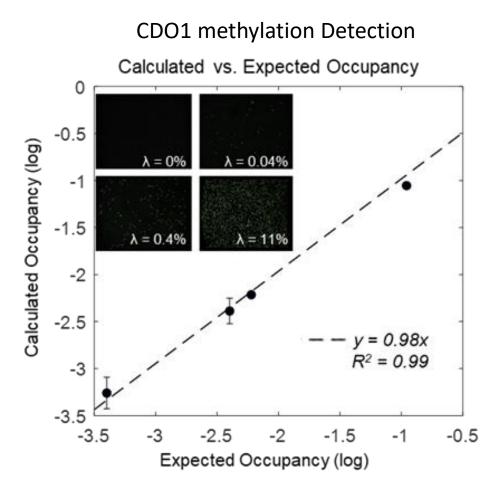
Copies

0 ±

 $0.7 \pm$

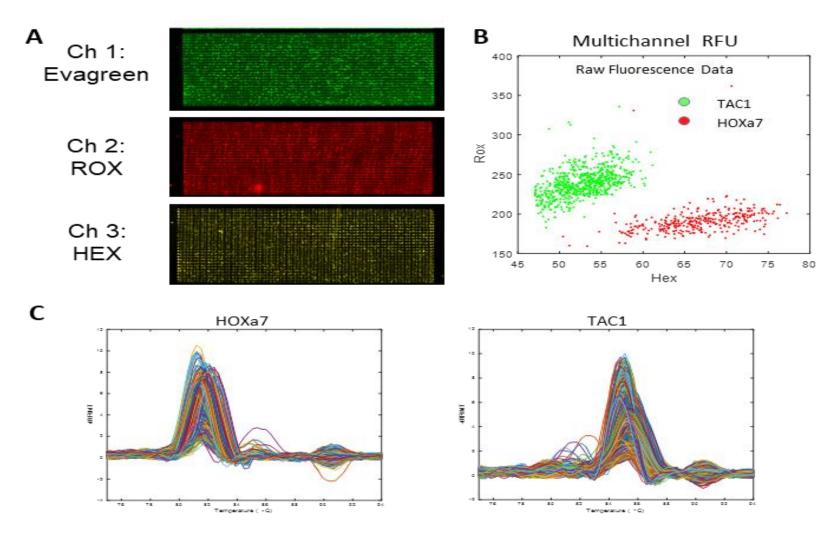
0.6


Input	DREAMing	ddPCR
40	18.3	0.7
400	166.0	1.4
4000	-	14.3


*Unmethylated background set to 2 million copies per reaction

Drawback to this nanowell design: sample-reaction mixture could only be loaded into the device at ~20% efficiency, ultimately leading to an 80% loss in sample

Microfluidic Droplet Digital High-Resolution Melt


Near 100% loading efficiency

Developing a Digital Microfluidic Multiplex DREAMing Assay

Solution for Sampling Issue

Acknowledgements

Jeff Wang Tom Pisanic Alex Stark Christine O'Keefe Alicia Hulbert Chen Chen Brenda Diergaarde Jian-Min Yuan David Wilson Sona Joyce

SWOT for DNA Methylation Detection

Strengths

Technical to Clinical team integration

Extreme Sensitivity (Biologic and Analytic)

Simplicity of data interpretation

DNA methylation robustness—stable molecule

Low cost of assay

Weakness

Lack of Commercial Partner

Complexity of Analyte Prep process

Potential for detection of other malignancies

Increased complexity of more sensitive approaches

Opportunities

Robotics for throughput and standardization

Extending approach to universal detection

Threats

ctDNA competing approaches (sequencing)

If successful, competition

If fail, loss of interest in ctDNA