

KNIGH

Institute

CANCER

A Review of Seed Investments at the Knight Cancer Institute For Early Detection Research Bree Mitchell, Paul Spellman, Sadik Esener March 6th, 2018

Cancer Early Detection Advanced Research (CEDAR) Center

DISCLOSURE

Co-inventor on two patents on electrokinetic separation licensed to **Biological Dynamics**

Co-founder and Co-inventor on two patents on nano-delivery particles licensed to **Devacell Inc.**

Co-founder and Co-inventor on 5 patents on Optophoresis licensed to

Genoptix (A Novartis Co.)

Co-founder of endoscope manufacturer

Pensivision Inc.

Co-founder, SAB member and co-inventor of two patents licensed to

Nanomed Tracking

Co-founder of

Trogenex Inc.

Co-founder and SAB board member of

Cellics Therapeutics Inc

Co-founder of

Ziva corp.

A Computer Engineer's Perspective on Cancer?

- Biological Tissue: a network of *self-replicating* processors with a well defined instruction set to respond to a given stimulus to perform a related function
- The response results from the interaction of the input received with the stored instruction set

At its core, cancer originates from biological cells with a modified instruction set as a result of internal, extrinsic, and/or external factors

As the cell self-replicates alterations propagate and integrate and the diseased cell types grow leading to a heterogeneously populated network

Cancer is not just one disease – it's many!

Early Detection:

Time —

Enable intervention before lethal disease gains significant heterogeneity preferably at the premalignant stage

- Genomic instability occurs early and DCIS have copy number alterations similar to IDC (Berman Cold Spring Harb. Symp. Quant. Biol 2005, K. Chin Nat. Genet. 2004)
- => the majority of gene changes occur between normal and DCIS
- Genomic studies comparing DCIS to IDC found
 - Microenvironment affects gene expression changes that occur between DCIS and IDC (Lee, Cancer Res 2012, X. J. Ma 2003, 2009, A.C. Vargas, 2012)
- DCIS is lethal in a small subset of patients, *irrespective of treatment received*

CEDAR's MISSION

Similar progression characteristics have been reported for many other cancers

- Ductal Carcinoma In Situ (DCIS)
- Lobular Carcinoma In Situ (LCIS)
- MGUS (Multiple Myeloma)
- Diabetes (Pancreatic cancer)
- Cervical dysplasia
- Oral submucous fibrosis
- Actinic keratosis (Melanoma)
- Dyskeratosis congenita
- Leukoplakia erythroplakia
- Clonal hematopoiesis (AML)

- Prostatic intraepithelial neoplasia (PIN)
- Atypical small acinar proliferation (ASAP)
- Proliferative inflammatory atrophy (PIA)
- Sideropenic dysphagia (esophageal)
- Barrett's esophagus
- Atrophic gastritis
- Colorectal adenoma
- Chronic inflammatory bowel diseases
- Colon polyps
- Mucinous cystic neoplasm (pancreas)
- Intraductal papillary mucinous neoplasms (IPMN)
- TO DETECT, PREDICT, AND PREVENT PROGRESSION OF PREMALIGNANT DISEASES TO AGGRESSIVE CANCERS

CEDAR's Early Detection Goals

COLLECT LONGITUDINAL DATA ON AS MANY BIOMARKERS AS POSSIBLE

BARRIERS

CANCER: A multidimensional nonlinear time dynamics problem Need longitudinal multi-parametric large amounts of measured data

- ASSEMBLING A LONGITUDINAL HIGH RISK COHORT -> Very costly
- ESTABLISHING THE BIOMARKERS -> Biology and Technology complexity
- SCREENING FOR BIOMARKERS -> Regulations and technology
- UNDERSTANDING FACTORS INVOLVED IN EARLY DISEASE PROGRESSION
 -> many confounding factors -> Big data overlay
- DIFFERENTIATING LETHAL FROM NON LETHAL EARLY CANCERS
 -> time dynamic multivariable nonlinear process -> Machine Learning
- TREATING EARLY LETHAL CANCERS
 -> Require less invasive treatments
- BUSINESS MODEL
 - -> Convincing to Pharma and Insurance provider
 - -> Global coordination & collaboration

The Knight Cancer Challenge

- \$500M donation
 - from Phil Knight (Nike cofounder) with a match requirement
- Matching funds came from:
 - 10,000 individual donors from across the country and world
 - State bond to build a new building

Pioneer Project Oregon

llman

Bringing Oregon together to improve health and wellness We will recruit up to a Million Oregonians...

Triage a cancer high risk cohort to follow with longitudinal studies So we can develop prevention and treatment approaches that meet the needs of our state.

Searching for early biomarkers in Fluids: Detecting CTC's, Tumor affected proteases, Platelets, ctDNA, RNA and EVs

Nature Reviews | Cancer

SORTING BIOMARKERS: Electro-kinetics & Magneto-kinetics

DIELECTROPHORETIC FORCE

$$\langle F_{dep} \rangle = 2\pi r^3 \varepsilon_m Re \left\{ \frac{\varepsilon_p - \varepsilon_m}{\varepsilon_p + 2\varepsilon_m} \right\} \nabla [E_{rms}]^2$$

size Dielectric properties

- High electric field gradients
- Heating
- Electro chemistry

MAGNETOPHORETIC FORCE

$$\langle F_{mep} \rangle = 2\pi r^3 \mu_m Re \left\{ \frac{\mu_p - \mu_m}{\mu_p + 2\mu_m} \right\} \nabla [B_{rms}]^2$$

Magnetic properties

- Passive system
- Requires addition of Gd
- Lower gradients

Separation of RBC from WBC by Dielectrophoresis (Nanogen)

Separation of leukemic cells by Optophoresis (*Genoptix*)

Magnetic separation in blood Durmus et. Al, PNAS, 2015

Circulating Hybrid Cell (CHC)

Prof. Melissa Wong Lab.

CHCs: Novel circulating cell biomarker in Early Disease

- CHCs can be identified in the blood as a distinct cell population that coexpresses cytokeratin and a macrophage marker, CD45.
- Macrophage and cancer cell genetic materials may sometimes fuse together to create CHCs
- Early tumors produce 10x more CHCs than traditional CTCs

Early detection of CHCs may provide opportunity for prognosis assessment

Novel Electrophoretic Assay for Detection of

Protease Activity

Augusta Modesto

Hypothesis: Proteases may drive the initiation and progression of cancers

To quantitatively detect proteases in whole blood we developed <u>charge-changing</u> <u>fluorescent peptide substrates</u> for a number of protease

Monitoring protease activity \rightarrow opportunity to detect cancer at an early stage

Modestino, AE et al. Electrophoresis, 2015; Lefkowitz, R et al. Analytical Chemistry, 2010

Pancreatic Proteases Activity Preliminary Results

Trypsin-like Activity
Chymotrypsin-like Activity
Elastase-like Activity

Electrokinetic / Fluorescence Based Screening of Blood Components

How can we use technology to screen cancers?

Need: minimally invasive, low cost, specific, and accurate strategy for low cost biomarker isolation and analysis for scalable cancer screening.

Approach:

Harness unique electrokinetic properties of biochips to isolate circulating nucleic acids and exosomes for early detection

DEP Chip Isolation of Exosomes from Pancreatic and Colon Cancer

Patient Plasma Samples

S. Ibsen, M. J. Heller and S. Esener Labs. UCSD

DEP 15-20 minutes, 50µl pancreatic or colon (control) cancer patient *archival* plasma sample On-Chip/In-Situ fluorescent double antibody assay Glypican-1 **(RED Fluorescence)**

Smart Phone Enabled Portable Screening Biological Dynamics (San Diego)

Courtesy of Biological Dynamics

Signs of Early Cancer: Liver Cirrhosis

Identified a panel of **messenger RNA** from cell-free RNA sequencing that differentiates liver cirrhosis patients from healthy controls

This mRNA panel can now be used to follow patients at risk and their progression to liver cancer

Global changes in the epigenetics: hallmark for cancer

Adapted from the Human Protein Atlas

DNA

RNA

protein

useful biomarkers may involve features across several length scales

Tissue Joe Gray

IHC Microcopy

Sub-Cell

Nanoscale cell-cell interactions

Cell

Knight Cancer Institute is developing tools to study cell-microenvironment interactions at many scales

Nanoscale Biology:

Visualization of: cell-cell interactions cell inner workings

Xiaolin Nan <Nan@ohsu.edu>

- (image courtesy: Phil Stork)
- **Filipodia-like structures** Potential indicators of dynamic, cancermicroenvironment interactions that influence proliferation, invasion,

Spatial distribution of various proteins within a cell

EPIGENETICS AND IMMUNE μ -ENVIRONMENT

Biomarkers to distinguish indolent from aggressive disease

eksi@ohsu.edu

Buenrostro et al., 2013

Epigenetic changes that occur in rare cells may capture the early transition to aggressive prostate cancer.

aday@ohsu.edu

Asgharzadeh et al., 2017

H&E staining

Changes in the tumor μ -environment can predict patient outcome.

Delineate the tumor and its environment spatially and at single-cell resolution by integrating IHC and ATAC-seq

Our Expertise and Philosophy

Our guiding philosophy: teaming for the success of projects

A Flat Organizational Structure with a Diverse Talent Pool

3 Co-directors Administrative Team

Mentors	Innovator
COLLABORATE	CREATE
(Integrators)	<i>(Pioneers)</i>
Do Things That	Do New
Last	Things
15%	10%
CONTROL	COMPETE
(<i>Guardians</i>)	(<i>Drivers</i>)
Do Things	Do Things
Right	Now
25%	50%
Specialists	Students & Postdocs

Teaming to complement CEDAR capabilities

- Teaming among CEDAR Researchers
- Teaming with Oregon Institutions

KNIGHT

CANCER Institute

- Teaming across the Nation Academic + Health care + Insurance
- Teaming with Industry Pharma and Instrumentation
- Teaming with International Partners

Shaping a Collaborative Environment

Defining Success

- Have we improved quality of life?
- Have we discovered something about cancer that wasn't known before?
- Have we created a global network of researchers focused on early cancer detection?
- Have we trained people for a diversity of careers?
- Have we made a positive impact to Oregon's economy?

Building an army of 100+ "Knights" to end cancer as we know it