Early Detection Initiative: A randomized controlled trial of algorithm-based screening in patients with new onset hyperglycemia and diabetes for early detection of pancreatic ductal adenocarcinoma.

Pancreatic ductal adenocarcinoma (PDAC) is the only leading cause of cancer death without an early detection strategy. In retrospective studies, 0.5-1% of subjects >50 years of age who newly develop biochemically-defined diabetes have been diagnosed with PDAC within 3 years of meeting new onset hyperglycemia and diabetes (NOD) criteria. The Enriching New-onset Diabetes for Pancreatic Cancer (ENDPAC) algorithm further risk stratifies NOD subjects based on age and changes in weight and diabetes parameters. We present the methodology for the Early Detection Initiative (EDI), a randomized controlled trial of algorithm-based screening in patients with NOD for early detection of PDAC. We hypothesize that study interventions (risk stratification with ENDPAC and imaging with Computerized Tomography (CT) scan) in NOD will identify earlier stage PDAC. EDI uses a modified Zelen's design with post-randomization consent. Eligible subjects will be identified through passive surveillance of electronic medical records and eligible study participants randomized 1:1 to the Intervention or Observation arm. The sample size is 12,500 subjects. The ENDPAC score will be calculated only in those randomized to the Intervention arm, with 50% (n = 3125) expected to have a high ENDPAC score. Consenting subjects in the high ENDPAC group will undergo CT imaging for PDAC detection and an estimate of potential harm. The effectiveness and efficacy evaluation will compare proportions of late stage PDAC between Intervention and Observation arm per randomization assignment or per protocol, respectively, with a planned interim analysis. The study is designed to improve the detection of sporadic PDAC when surgical intervention is possible.

Chari ST, Feng Z, Huang Y, Kambadakone A, Kenner B, Maitra A, Matrisian LM, Rinaudo JAS, Shrader EE, Srivastava S, Wu BU, Zhao YQ

34954100

Contemp Clin Trials, 2022, 113

Version 5.1.3