Can algorithmically assessed MRI features predict which patients with a preoperative diagnosis of ductal carcinoma in situ are upstaged to invasive breast cancer?


To assess the ability of algorithmically assessed magnetic resonance imaging (MRI) features to predict the likelihood of upstaging to invasive cancer in newly diagnosed ductal carcinoma in situ (DCIS).

We identified 131 patients at our institution from 2000-2014 with a core needle biopsy-confirmed diagnosis of pure DCIS, a 1.5 or 3T preoperative bilateral breast MRI with nonfat-saturated T<sub>1</sub> -weighted MRI sequences, no preoperative therapy before breast MRI, and no prior history of breast cancer. A fellowship-trained radiologist identified the lesion on each breast MRI using a bounding box. Twenty-nine imaging features were then computed automatically using computer algorithms based on the radiologist's annotation.

The rate of upstaging of DCIS to invasive cancer in our study was 26.7% (35/131). Out of all imaging variables tested, the information measure of correlation 1, which quantifies spatial dependency in neighboring voxels of the tumor, showed the highest predictive value of upstaging with an area under the curve (AUC) = 0.719 (95% confidence interval [CI]: 0.609-0.829). This feature was statistically significant after adjusting for tumor size (P < 0.001).

Automatically assessed MRI features may have a role in triaging which patients with a preoperative diagnosis of DCIS are at highest risk for occult invasive disease.

4 Technical Efficacy: Stage 3 J. Magn. Reson. Imaging 2017;46:1332-1340.

  • Grimm LJ
  • Harowicz MR
  • Hwang ES
  • Marcom PK
  • Marks JR
  • Mazurowski MA
  • Saha A
PubMed ID
Appears In
J Magn Reson Imaging, 2017, 46 (5)