Impact of a computer-aided detection (CAD) system integrated into a picture archiving and communication system (PACS) on reader sensitivity and efficiency for the detection of lung nodules in thoracic CT exams.

The objective of this study is to assess the impact on nodule detection and efficiency using a computer-aided detection (CAD) device seamlessly integrated into a commercially available picture archiving and communication system (PACS). Forty-eight consecutive low-dose thoracic computed tomography studies were retrospectively included from an ongoing multi-institutional screening study. CAD results were sent to PACS as a separate image series for each study. Five fellowship-trained thoracic radiologists interpreted each case first on contiguous 5 mm sections, then evaluated the CAD output series (with CAD marks on corresponding axial sections). The standard of reference was based on three-reader agreement with expert adjudication. The time to interpret CAD marking was automatically recorded. A total of 134 true-positive nodules, measuring 3 mm and larger were included in our study; with 85 ≥ 4 and 50 ≥ 5 mm in size. Readers detection improved significantly in each size category when using CAD, respectively, from 44 to 57 % for ≥3 mm, 48 to 61 % for ≥4 mm, and 44 to 60 % for ≥5 mm. CAD stand-alone sensitivity was 65, 68, and 66 % for nodules ≥3, ≥4, and ≥5 mm, respectively, with CAD significantly increasing the false positives for two readers only. The average time to interpret and annotate a CAD mark was 15.1 s, after localizing it in the original image series. The integration of CAD into PACS increases reader sensitivity with minimal impact on interpretation time and supports such implementation into daily clinical practice.

Alpert J, Anand V, Bogoni L, Fantauzzi J, Florin CH, Ko JP, Koo CW, Mason D, Naidich DP, Rom W, Salganicoff M, Shiau M


J Digit Imaging, 2012, 25 (6)

Version 5.1.0