Ex vivo culture of primary human fallopian tube epithelial cells.


Epithelial ovarian cancer is a leading cause of female cancer mortality in the United States. In contrast to other women-specific cancers, like breast and uterine carcinomas, where death rates have fallen in recent years, ovarian cancer cure rates have remained relatively unchanged over the past two decades (1). This is largely due to the lack of appropriate screening tools for detection of early stage disease where surgery and chemotherapy are most effective (2, 3). As a result, most patients present with advanced stage disease and diffuse abdominal involvement. This is further complicated by the fact that ovarian cancer is a heterogeneous disease with multiple histologic subtypes (4, 5). Serous ovarian carcinoma (SOC) is the most common and aggressive subtype and the form most often associated with mutations in the BRCA genes. Current experimental models in this field involve the use of cancer cell lines and mouse models to better understand the initiating genetic events and pathogenesis of disease (6, 7). Recently, the fallopian tube has emerged as a novel site for the origin of SOC, with the fallopian tube (FT) secretory epithelial cell (FTSEC) as the proposed cell of origin (8, 9). There are currently no cell lines or culture systems available to study the FT epithelium or the FTSEC. Here we describe a novel ex vivo culture system where primary human FT epithelial cells are cultured in a manner that preserves their architecture, polarity, immunophenotype, and response to physiologic and genotoxic stressors. This ex vivo model provides a useful tool for the study of SOC, allowing a better understanding of how tumors can arise from this tissue, and the mechanisms involved in tumor initiation and progression.

  • Drapkin R
  • Fotheringham S
  • Levanon K
Pub Med ID
Appears In
J Vis Exp, 2011 (51)