Real-time telomerase assay of less-invasively collected esophageal cell samples.
Abstract
Genomic and proteomic efforts have discovered a complex list of biomarkers that identify human disease, stratify risk of disease within populations, and monitor drug or therapy responses for treatment. Attention is needed to characterize these biomarkers and to develop high-throughput technologies to evaluate their accuracy and precision. Telomerase activity is correlated with tumor progression, indicating cells that express telomerase possess aggressive clinical behavior and that telomerase activity could be a clinically important cancer biomarker. Traditionally, the detection of cancer has involved invasive procedures to procure samples. There is a need for less invasive approaches suitable for population- and clinic-based assays for cancer early detection. Esophageal balloon cytology (EBC) is a low-invasive screening technique, which samples superficial epithelial cells from the esophagus. Since telomerase activity is absent in superficial cells of normal esophageal squamous epithelium but is often present in superficial cells from dysplastic lesions and ESCCs, measuring telomerase activity in EBC samples may be a good way to screen for these lesions. The development of rapid real-time telomerase activity assays raises the possibility of extending such screening to high-risk populations. In this study, we evaluate the feasibility of using rapid Real-Time Telomerase Repeat Amplification Protocol (RTTRAP) for the analysis of NIST telomerase candidate reference material and esophageal clinical samples. The telomerase activity of eight EBC samples was also measured by capillary electrophoresis of RTTRAP products, RApidTRAP, and hTERT mRNA RT-PCR assays. These findings demonstrate the feasibility of using the RTTRAP assay in EBC samples and suggest that individuals from high-risk populations can be screened for telomerase activity.
Authors
- Abnet CC
- Atha DH
- Dawsey SM
- Huppi K
- Jakupciak JP
- McGruder BM
- Qiao YL
- Taylor PR
- Wang W
- Wei WQ