NCI-FDA-NIST Workshop on Standards in Molecular Diagnostics

Whole Genome, High Density Platforms, Standards, and New Approaches to Evaluation of Molecular Assays

Zivana Tezak, PhD OIVD/CDRH/FDA

December 7, 2012 Rockville, MD

Disclaimer

- I will touch briefly on various data, performance, and interpretation issues
- Thoughts presented here are preliminary and do not represent finalized FDA policy

Pre-submission for outstanding questions

NGS challenges

- Rapid development of NGS technologies
 - Paradigm-shifting, disruptive technology
 - Moving towards wider clinical use
 - Predicted change in how clinical practice / dx will be performed
 - Looking at the whole genome instead of just a few mutations in one gene
 - Raising new policy / regulatory issues

Overview

- Regulatory requirements and FDA evaluation of genomic tests (IVDs)
 - Performance information
 - Pre-analytical, analytical, and clinical performance
- Current developments
 - High density platforms / NGS / WGS
 - Challenges

Genomic Tests

- DNA, RNA-based; single marker, multiple marker tests
- Genotyping for
 - ✓ Carrier screening (e.g., CFTR)
 - ✓ Aid in diagnosis (e.g., FVL/FII/MTHFR, CFTR)
- Drug metabolism (e.g., CYP2C9, VKORC1)
- Markers for
 - ✓ Disease risk, prognosis
 - ✓ Therapeutic decisions prediction, adverse events, dosing
- Infectious diseases
 - Detection, genotyping, viral load

Performance of FDA Approved/Cleared Genomic Tests Publicly Available

Decision summaries of 510(k)s

http://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfPMN/pmn.cfm

SS&ED of PMAs

http://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfPMA/pma.cfm

What does FDA review for genomic tests?

- Intended use/indications for use
- Device description (platform, software)
- Pre-analytical
- Analytical Performance
- Clinical Performance
- Instrumentation, software validation (if applicable)
- Labeling (package insert)

Analytical Performance

- Does my test measure the analyte I think it does?
- Correctly?
- Reliably?

Non-NGS Genomic Tests...

Analytical Performance: Accuracy

- Evaluating by -
 - Comparison to a reference method e.g., bi-directional DNA sequencing
 - Comparison to a clinical truth
- Real clinical samples
 - Multiple clinical samples per allele
- Cover <u>every</u> claimed allele/result, genotype, subtype/class

^{*} Accuracy - closeness of the agreement between the result of a test and result of reference method.

Non-NGS Genomic Tests...

Analytical Performance: Accuracy

-- example (accuracy data per allele vs. per test?)

Alleles	% Agreement
Total	98.40
Alleles 1 - 20	100.00
Allele 21	87.50
Allele 22	66.67
Allele 23	96.55

Non-NGS Genomic Tests...

Analytical Performance: Precision

- Studies to demonstrate intended users can get reliable results
- All sources of variability should be identified and assessed
- Use clinical samples where possible
 - Adequate coverage of all genotypes/tumor types
 - In limited cases (i.e., very rare alleles) may use contrived samples
 - Samples should mimic the molecular composition and concentration of real clinical samples
- All analytical steps of the assay should be included

Test Performance Evaluation

 Analytical performance - does my test measure the analyte I think it does?
Correctly? How reliably?

 Clinical performance - does my test result correlate with target condition of interest in a clinically significant way?

Clinical Performance

- When sufficient information, well-known association between genetic variants and medical condition —
 - For each claimed allele:
 - Peer-reviewed articles
 - Genotype phenotype
 - Example CFTR mutation panel ACMG/ACOG, literature
- When not enough information, well-known association between genetic variants and medical condition –
 - Likely require clinical studies
 - Example mutations in a novel gene to predict risk of developing cancer

Summary: What Does FDA Review for Genomic Tests?

Safety and effectiveness based on:

- -Satisfactory analytical performance
- -Clinical performance in the context of use
- Labeling compliant with labeling regulations for IVDs (21 CFR 809.10)
- Other factors such as ability to repeatedly manufacture the device to specifications

Challenges – High Density Platforms

- Unlimited results, open to interpretation --> clinical significance?
- Adequate demonstration of analytical reliability of all possible outputs?
 - Cannot expect clinical samples that span all possible variation in the genome for studies
 - Accuracy reference method? What is "truth" analytically?
 - Difficult to capture all sources of analytical variation
 - Expected accuracy / precision?
- Controls? Standards?

Public Meeting to Discuss WGS / NGS

Ultra High Throughput Sequencing for Clinical Diagnostic Applications - Approaches to Assess Analytical Validity, June 23, 2011

The Food and Drug Administration (FDA) is announcing a public meeting Ultra High Throughput Sequencing for Clinical Diagnostic Applications - Approaches to Assess Analytical Validity.

The purpose of the meeting is to discuss challenges in assessing analytical performance for ultrahigh throughput genomic sequencing-based clinical applications.

Topics:

- Technical performance evaluation of sequencing platforms
 - Accuracy evaluation, validation samples, analytical standards
- Bioinformatics
 - Data format, storage, data analysis

Applications / Scenarios of use (ACMG)

- Targeted; WES; WGS
- Considered in the clinical diagnostic assessment of a phenotypically affected individual when:
 - Strongly implicated genetic etiology, phenotype does not correspond with a specific disorder.
 - A patient presents with a genetic disorder with high degree of genetic heterogeneity / multiple gene possibilities for the phenotype.
 - A likely genetic disorder but specific genetic tests available for that phenotype have failed to arrive at a diagnosis.

Plus:

Actionable targets in cancer (tumor/normal pairs)

Workflow / Modules

- Pre-analytical (sample collection, extraction / quantification, amplification)
- Library construction
- Amplification
- Detection sequence generation
- Analysis
 - Base calling (quality score)
 - Alignment
 - Variation identification
- Confirmation

- Reagents
 - assay-specific
 - general
- Library preparation
- Detection (sequencing)
 - Instrument
 - Software
- Analysis
 - Formats?
- Possible exchange between modules?
- General vs specific clinical application modules

Analytical validation strategies?

- Need to develop efficient approaches for analytical validation of NGS / highly multiplexed genetic tests.
 - Cannot expect clinical samples covering every variation (traditional approach: explicitly validate each marker used in generating test result)
- Possible approach select and validate adequate subset of genetic markers -> inference that platform as a whole analytically valid -
 - Enrich with analytically challenging markers?
 - Include markers from relevant disorders?
 - Homopolymeric regions, indels, repeats, CNVs, redundant sequences, samples across the genome / chromosomes, etc?
- Perform confirmatory testing of the results?

Analytical validation strategies? (cont.)

- → Minimum percentage of genome that needs to be covered to understand the platform performance as a whole?
- → Perform confirmatory testing of the results?

- Comparator / reference methods; orthogonal methods?
- Use well characterized samples (eg, NA12878)?

Needs / possible reference materials

- SNVs
- CNVs, structural variants
- Characterized human reference materials? Cell lines?
 - Family trio? (1000 genomes samples, etc)
- Synthetic materials, spiked in controls? (-> cancer, ratios)
- Existing data?
- ✓ Data formats??

Analytical evaluation – criteria?

- Completeness, quality scores, sequencing depth / coverage, % correct base calls, haplotype error, quality likelihood, confidence levels?
- Variant calling number of expected calls, base substitutions, insertions, deletions, inversions?
- Unbiased allele sampling; distribution of calls along chromosomes?
- Base quality scores?
- Easy-to-call vs difficult regions different performance expectations?

Clinical evaluation / interpretation

- Platform
- Specific intended uses

- Confirmation of results?
- Data bases?
- Clinical interpretation by certified professionals?

Where do we go from here?

- Move towards FDA-regulated systems
 - Novel / flexible approach to validation
 - System needs to be analytically validated
 - Interpretation expert, database development
- Work across government, academia, professional societies, industry, etc, towards validated technologies and best practices
- Build databases to increase generalizable knowledge

Collaborations / leveraging resources

- Collaborations across agencies within FDA, with other federal partners, academia, MDIC
- Standardization efforts
 - NIST "genomes in a bottle"
 - CDC-led initiatives (GeT-RM, Nex-StoCT2)
 - NCBI
 - collaborating w/ CFSAN, NCTR
- Other initiatives
 - CAP
 - ACMG (policy statement, April 2012)
 - CLSI, others

Looking Forward

- FDA's process is evolving
- Each new submission may raise different regulatory and scientific issues
- Contact the Agency early and often!

Summary

